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Abstract. We discuss the critical behaviour of the spin-(1, 1
2)Heisenberg ferrimagnetic chain in a

magnetic field, whose magnetization curve exhibits a plateau at a third of the full magnetization. A
bond alternation stabilizes the massive state, whereas an exchange anisotropy causes the breakdown
of the plateau and the onset of a gapless spin-fluid state, where the transition, lying in theXY but
ferromagnetic region, is of Kosterlitz–Thouless type. In order to elucidate significant quantum
effects, we investigate the model of the classical version as well.

1. Introduction

Ground-state magnetization curves of quantum spin chains have been attracting much recent
interest due to their quantized plateaux as functions of a magnetic field. Several years ago
Hida [1] revealed that a spin-1

2 ferromagnetic–antiferromagnetic–antiferromagnetic trimerized
chain exhibits a plateau in its magnetization curve at a third of the full magnetization. Although
it was already familiar that, in the presence of a field, integer-spin Heisenberg antiferromagnetic
chains remain massive from zero field up to a critical field [2], yet the magnetization plateau at a
fractional value of the full magnetization was still met with a surprise. Since then various low-
dimensional quantum spin systems in a field have been investigated, including polymerized
spin chains [3–8], spin chains with anisotropy [9] or four-spin exchange coupling [10], and
decorated spin ladders [11–13]. Experimental observations [14,15] of quantized magnetization
plateaux have also been reported. In such circumstances, generalizing the Lieb–Schultz–
Mattis theorem [16, 17], Oshikawa, Yamanaka, and Affleck (OYA) [18] found a criterion for
thefractional quantization. They pointed out that quantized plateaux in magnetization curves
may appear under the condition

Sunit −m = integer (1.1)

whereSunit is the sum of spins over all sites in the unit period andm is the magnetizationM
divided by the number of the unit cells.

Mixed-spin chains constitute the system among all others that stimulates us in this context.
There exists a large amount of chemical knowledge [19] on quantum ferrimagnets. In an
attempt to realize a quasi-one-dimensional ferrimagnetic system, Gleizes and Verdaguer [20]
synthesized a few bimetallic compounds such as AMn(S2C2O2)2(H2O)3·4.5H2O (A = Cu,
Ni, Pd, Pt). Then numerous chemical explorations [21, 22] followed and various examples
of a ferrimagnetic one-dimensional compound were systematically obtained. The vigorous
experimental research motivated theoretical investigations into Heisenberg ferrimagnets.

0953-8984/99/265175+12$19.50 © 1999 IOP Publishing Ltd 5175



5176 S Yamamoto and T Sakai

Drillon et al[23] pioneeringly carried out numerical diagonalizations of spin-(S, 1
2)Heisenberg

Hamiltonians forS = 1 to 5
2 and revealed typical thermodynamic properties of ferrimagnetic

mixed-spin chains. In recent years, quantum ferrimagnets have met with further theoretical
understanding [24–34] owing to various tools such as field [24,34] and spin-wave [25,26,32,33]
theories, matrix-product formalism [27,28], and quantum Monte Carlo [26,29,32] and density-
matrix renormalization-group [25,30,32] techniques. In particular, their mixed nature, showing
both ferromagnetic and antiferromagnetic aspects [32], has lately attracted considerable
attention.

However, little is known about quantum ferrimagnetic behaviour in a magnetic field
[27], especially about magnetization curves [31]. Although anisotropy is an interesting and
important factor from an experimental point of view, there exist few arguments on anisotropic
models in a field. Now, considering the OYA argument and the accumulated chemical
knowledge on ferrimagnetic compounds, the magnetization process of realistic mixed-spin-
chain models arouses our interest all the more and indeed deserves urgent investigation. In
an attempt to provide guides for further experimental study, we here consider an alignment of
alternating spinsS ands in a field, as described by the Hamiltonian

H =
N∑
j=1

[
(Sj · sj )α + δ(sj · Sj+1)α −H(Szj + szj )

]
(1.2)

where

(S · s)α = Sxsx + Sysy + αSzsz.

We note that even the bond alternationδ is now experimentally adjustable [22]. According to
the OYA criterion (1.1), asH increases from zero to the saturation field

Hsat= 1

2
(1 + δ)

[
α(S + s) +

√
α2(S − s)2 + 4Ss

]
(1.3)

the model (1.2) may exhibit quantized plateaux atm = 1
2 (1),

3
2 (2), . . ., S + s − 1. Though

a multi-plateau problem is a fascinating subject, we restrict our argument to the simplest case
of (S, s) = (1, 1

2) in the following. This is, on the one hand, because we at first aim at
understanding the typical and essential behaviour of quantum ferrimagnets in a field, and, on
the other hand, because the low-energy structure of the model (1.2) remains qualitatively
the same [24, 32] as long asS 6= s. Then, a plateau is expected atm = 1

2. At the
Heisenberg point, the ground state of the Hamiltonian (1.2) without field is a multiplet of spin
N/2 [35]. The ferromagnetic excitations, reducing the ground-state magnetization, exhibit a
gapless dispersion relation, whereas the antiferromagnetic ones, enhancing the ground-state
magnetization, are gapped from the ground state [29]. Therefore, at the isotropic point,m

jumps up to1
2 just as a field is applied and forms a plateau forHc1 6 H 6 Hc2 [31], where

Hc1 andHc2 are the lower and upper critical fields, equal to 0 and the antiferromagnetic gap,
respectively.

In the presence of exchange anisotropy, the above argument should be modified, where
the(N + 1)-fold-degenerate ground-state multiplet splits [24,30], as illustrated in figure 1. In
the Ising region, the ground state is a doublet ofM = ±N/2 and thereforeHc1 remains 0. As
α increases,Hc2 comes to be given as(1 + δ)α and the magnetization curve ends up with a
trivial step. Thus we take little interest in this region. In theXY region, on the other hand, the
ground state is a singlet ofM = 0. NowHc1 moves away from 0 and the plateau shrinks asα

decreases (see figure 2 below). Here a stimulating problem arises: how stable is the plateau
against the anisotropy and what replaces the plateau phase? In this article, we demonstrate that
the plateau survives theXY anisotropy over the entire antiferromagnetic region and vanishes
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Figure 1. A schematic view of the low-energy structure of the spin-(1, 1
2) quantum ferrimagnetic

chain with anisotropic exchange coupling near the Heisenberg pointα = 1: (a) the Ising region
α > 1 and (b) theXY regionα < 1.
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Figure 2. The ground-state magnetization curves for the quantum Hamiltonian (1.2) at various
values ofα: (a) δ = 1 and (b)δ = 0.6.

in the ferromagnetic region. The transition is of Kosterlitz–Thouless (KT) type [36] and a
gapless spin-fluid phase [37] appears instead.

2. Scaling analysis

We numerically diagonalize finite clusters up toN = 12 and analyse the data obtained,
employing a scaling technique [9,38]. Suppose a field is applied to the cluster ofN unit cells;
a magnetization, let us say,M, is induced in the ground state. In this sense we represent a field
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as a function ofN andM: H(N,M). Even thoughM, as well asN , is given,H(N,M) is not
in general unique. The upper and lower bounds ofH(N,M) are, respectively, given by

H+(N,M) = E(N,M + 1)− E(N,M) (2.1)

H−(N,M) = E(N,M)− E(N,M − 1) (2.2)

whereE(N,M) is the lowest energy in the subspace labelledM of the Hamiltonian (1.2)
without the Zeeman term. If the system is massive in the sector labelledM, H±(N,M)
should approach different valuesH±(m), respectively, asN → ∞, which can be estimated
by the Shanks extrapolation [39]. In the critical system, on the other hand,H±(N,M) should
converge to the same value as [40,41]

H±(N,M) ∼ H(m)± πvsη

N
(N →∞) (2.3)

wherevs is the sound velocity andη is the critical index defined as〈σ +
0 σ
−
r 〉 ∼ (−1)rr−η with

a relevant spin operatorσ , which may here be a certain linear combination ofS ands.
In figure 2 we show thus-obtained thermodynamic-limit magnetization-versus-field

curves, where we smoothly interpolate the raw dataH(m) to guide the eyes. We might
expect the bond alternation to simply make the plateau grow because the magnetization curve
becomes stepwise asδ → 0. However, this naive prediction is not correct in general. In the
vicinity of the Ising limitα → ∞, the plateau length behaves as(1 + δ)α and thus the bond
alternation makes the plateau shrink. Around the Heisenberg pointα = 1, this picture seems
to be still valid in part but the precise scenario is not so simple. At the Heisenberg point, for
example, the antiferromagnetic excitation gap—that is, the gap between the ground state and
the lowest level in the subspace withM = N/2+1—is not a monotonic function ofδ (table 1).
On the other hand, near theXY point α = 0, the plateau seems to grow monotonically with
the bond alternation.

Table 1. The antiferromagnetic excitation gap1 as a function ofδ at the Heisenberg pointα = 1.

δ 1 0.8 0.6 0.4 0.2 0
1 1.7591 1.6042 1.4986 1.4500 1.4558 3/2

Onceδ is given, the plateau length is monotonically reduced with the decrease ofα. The
system is gapless in every sector of the Hilbert space in the ferromagnetically ordered region
α 6 −1 and is thus supposed to encounter a phase transition going through theXY region
−1 < α < 1. It is surprising that the plateau still exists at theXY point. We will show later
that such a stable plateau is peculiar to quantum spins, while, for classical spins, only a slight
anisotropy ofXY type breaks the plateau.

The plateau length

1N = H+(N,M)−H−(N,M)
is a relevant order parameter for detecting the phase boundary. The scaling relation (2.3)
suggests that1N should be proportional to 1/N in the critical system. We plot in figure 3(a)
the scaled quantityN1N as a function ofα. N1N looks independent ofN beyond a certain
value ofα, showing an aspect of the KT transition. The central chargec of the critical phase
can be extracted from the scaling relation of the ground-state energy:

E(N,M)

N
∼ ε(m)− πcvs

N2
(N →∞). (2.4)

Due to the small correlation length [25,26] of the present system, we can directly and precisely
estimatevs from the dispersion curves. In figure 3(b) we plotc versusα and find thatc



Breakdown of a magnetization plateau 5179

-1.0 -0.5 0.0 0.5
α

0.0

0.5

1.0

δ = 1
δ = 0.6

0.0

5.0

10.0

N
∆ N

 / 
δ

N = 12
N = 10
N = 8

δ = 0.6

δ = 1

c

η

(a)

(b)

Figure 3. (a) The scaled quantityN1N versusα at δ = 1 andδ = 0.6. (b) The central chargec
and the critical exponentη versusα in the vicinity of the phase boundary atδ = 1 andδ = 0.6.

approaches unity as the system goes toward the critical region. Assuming the asymptotic
formula1N ∼ 2πvsη/N , we can further evaluate the critical exponentη, which is also shown
in figure 3(b). Figure 3 fully convinces us of the KT universality of this phase transition. The
phase boundary is obtained by tracing the points withη = 1

4 [42] and is shown in figure 4
by a solid curve. On the other hand, we have another numerical tool, the phenomenological
renormalization-group (PRG) technique [43], for determining the phase boundary. At eachδ,
the PRG equation

(N + 2)1N+2(α, δ) = N1N(α, δ) (2.5)

gives size-dependent fixed pointsαc(N,N+2). αc(N,N+2) is well fitted to a linear function of
1/(N +1) in the vicinity ofδ = 1, whereas, asδ→ 0, the linearity becomes less good and thus
the uncertainty in theN → ∞ extrapolation increases. Just for reference, the thus-obtained
phase boundary is also shown in figure 4 by a dotted curve, which is somewhat at variance
with the highly accurate estimate based onη. The PRG equation applied to gapped-to-gapped
phase transitions yields an accurate solution, to be sure, but, for transitions to a gapless phase,
including those of KT type, the PRG analysis is likely to miss the correct solution due to
essential corrections to the scaling law (2.3), overestimating the gapped-phase region [44,45].
The present PRG solution may still be recognized as the lower boundary ofαc.

3. Sublattice magnetizations

In an attempt to elucidate how much effect quantum fluctuations have on the stability of the
plateau, we investigate the Hamiltonian (1.2) of classical version as well, whereSj andsj
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Figure 4. The phase diagram of the spin-(1, 1
2) quantum ferrimagnetic chain (1.2) at the absolute

zero temperature. The phase boundary determined by the critical indexη is shown by a solid
curve, whereas the PRG estimate is shown by a dotted curve. The dominant error for the PRG
result occurs in extrapolatingαc(N,N + 2) to theN → ∞ limit rather than originating from the
numerical diagonalization.
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Figure 5. The ground-state magnetization curves for the classical Hamiltonian (1.2) withδ = 1 at
various values ofα.

are classical vectors of magnitude 1 and1
2, respectively. We show in figure 5 the classical

magnetization curves. We note that the classical model also exhibits a plateau atm = 1
2. The

magnetization curves in the Ising region are not so far from the quantum behaviour, though
we have not shown them explicitly. However, the classical plateau can hardly survive the
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anisotropy ofXY type. In this context, it is interesting to observe sublattice magnetizations
separately. We show in figure 6 the configuration of each classical spin as a function of a
field. The classical plateau is nothing but a Néel-ordered state. In other words, without the
fully ordered staggered magnetization, classical spins could not form a magnetization plateau.
On the other hand, figure 7 shows that quantum spins can form a magnetization plateau with
any combination of sublattice magnetizations. It is the case with the quantum model as well
that sublattice magnetizations themselves freeze while going through the plateau. However,
as long as theXY exchange interaction exists, they are in general reduced from the full values
1 and− 1

2. It is quantum fluctuations that stabilize the plateau with unsaturated sublattice
magnetizations.

0.0 1.0 2.0 3.0
H

-0.5

0.0

0.5

s jz

0.0

0.5

1.0

S jz

α = -0.2
α = 0.6
α = 0.943
α = 0.97
α = 1

(a)

(b)

Figure 6. The ground-state sublattice magnetizations per unit cell as functions of a field for the
classical Hamiltonian (1.2) withδ = 1 at various values ofα: (a) the larger spinS = 1 and (b) the
smaller spin1

2 .

One more interesting observation on the quantum spin configuration is that the collapse
of the staggered order in thez-direction neither coincides with theXY point nor results in the
disappearance of the plateau. Thez-direction spin correlations between the two sublattices turn
ferromagnetic before the model reaches theXY point. Here let us recall the mixed nature [32]
of quantum ferrimagnets. Because of the coexisting elementary excitations of different types,
the specific heat exhibits a Schottky-like peak in spite of the initial ferromagnetic behaviour at
low temperatures, whereas the susceptibility–temperature product shows both increasing and
decreasing behaviours as functions of temperature. The present phenomenon, a massive state
in the ferromagnetic background, might also be recognized as a combination of ferromagnetic
and antiferromagnetic features.
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Figure 7. The ground-state sublattice magnetizations per unit cell as functions of a field for the
quantum Hamiltonian (1.2) withδ = 1 at various values ofα: (a) the larger spinS = 1 and (b) the
smaller spin1

2 .

4. Summary and discussion

We have investigated the critical behaviour of anisotropic Heisenberg mixed-spin chains in a
field. The model shows an anisotropy-induced transition of KT type between the plateau and
spin-fluid phases, whose phase boundary lies in the ferromagnetic coupling region. Though we
have restricted our argument to the case of(S, s) = (1, 1

2), qualitatively the same scenario may
be expected in higher-spin cases, where multi-plateau phases are possible with the assistance
of bond alternation [46].

While our scaling analysis is highly accurate, whether or not the plateau still exists at the
XY point is subtle. Therefore, any other argument would be helpful in understanding further
the numerical findings obtained. Let us consider a spin-1

2 ferromagnetic–antiferromagnetic–
antiferromagnetic trimerized chain

H =
N∑
j=1

[−γ (σaj · σbj )α + (σbj · σcj )α + (σcj · σaj+1)α
]

(4.1)

which can be regarded as the Heisenberg ferrimagnet in which we are interested in theγ →∞
limit. Such a replica-model approach is quite useful [47] in studying low-dimensional quantum
magnetism. Introducing the Jordan–Wigner spinless fermions via

λ
†
j = σλj

+
exp

[
−iπ

j−1∑
l=1

σλl
+
σλl
−
]

(λ = a, b, c) (4.2)
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we replace the Hamiltonian (4.1) by

H =
N∑
j=1

[
(aj , bj )−γ,α + (bj , cj )1,α + (cj , aj+1)1,α

]
(4.3)

where 4(a, b)γ,α = 2γ (a†b + b†a) + α(2a†a − 1)(2b†b − 1).
Now we focus our attention on theXY pointα = 0. After the Fourier transformation, we

obtain the equation for determining the single-particle excitation spectrum as

ε3
k − (γ 2 + 2)εk − 2γ cosk = 0. (4.4)

The resultant dispersion relation is qualitatively different according to whetherγ = 1 or
not, as illustrated in figure 8. Atγ = 1, which is not large enough to let ferromagnetically
coupled neighbouring spins construct spin 1’s, there is no gap in the excitation spectrum.
However, asγ increases, gaps open up in the sectors of1

3 and 2
3 band filling and this scenario

remains qualitatively unchanged over the whole regionγ > 1. Noting the relation between
the magnetization and the band filling,

M = Nocc− 3N

2
(4.5)

whereNocc is the number of occupied states, we can expect magnetization plateaux atm = ± 1
2.

The inclusion of the bond alternationδ results in the enhancement of the gap, which is consistent
with figure 2. Qualitatively the same scenario is obtained for a ferromagnetic–ferromagnetic–
antiferromagnetic trimerized chain, as was pointed out by two pioneering authors [48,49]. The
present analysis is not strictly comparable to the original argument unlessα = 1. However,
the nonvanishing gap in theγ →∞ limit may be qualitative evidence for the existence of the
plateau at theXY point in the original model (1.2). We further show in figure 9 the sublattice
magnetizations in the ground state of the replica model withα = 0 as functions of a field
at a few values ofγ > 1. We are convinced all the more that the Néel order has already
disappeared and that the spins 1 and1

2 have the same-signz-components at theXY point.

-1.0

0.0

1.0

ε k

k

∆

∆

0 0-π -ππ π

γ = 1(a) γ > 1(b)

Figure 8. Dispersion relations of the spin-1
2 trimerized chain (4.1) at theXY point α = 0.

(a) γ = 1. There is no gap in the excitation spectrum. (b)γ > 1. Gaps open up in the sectors of
1
3 and 2

3 band filling, where 21 = 3γ − (γ 2 + 8)1/2.

In recent years, a massive-to-spin-fluid phase transition of KT type has been given a great
deal of attention [50–56] in the context of Haldane’s conjecture [2]. In such cases the critical
point never goes beyond theXY point. The magnetization plateau in our argument should be
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Figure 9. The ground-state sublattice magnetizations per unit cell as functions of a field of the
trimerized spin-12 chain (4.1) at theXY pointα = 0 for γ = 1.25 andγ = 2.

distinguished from the gap immediately above the ground state, certainly, but, compared with
Haldane’s scenario [42], the present observation looks novel and is sufficiently fascinating to
merit further study. There may be a new mass-generation mechanism peculiar to quantum
mixed-spin chains, other than the valence-bond picture [57]. Quite recently Okamoto and
Kitazawa [58] have reported that the magnetization plateau of the spin-1

2 trimerized chain
which is closely related to the present model also disappears in theXY ferromagnetic region.
We hope that our investigation, combined with such an argument from a different viewpoint,
will contribute toward revealing the possibly novel scenario for the breakdown of quantized
plateaux.
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